Inorg. Chem. 2004, 43, 5436-5441

Inorganic Chemistry

Syntheses and Characterization of Some Mixed Te/Se Polychalcogenide Anions $[Te_mSe_n]^{2-}$

Perumal Sekar and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Received February 18, 2004

Several mixed Te/Se polychalcogenide anions $[Te_mSe_n]^{2-}$ were synthesized at 293 K by reactions between Te_n^{2-} and Se_n^{2-} anions in *N*,*N*-dimethylformamide (DMF) in the presence of different-size ammonium or phosphonium cations, in some cases in the presence of metal species. The structures of these anions were determined by single-crystal X-ray diffraction methods. The crystal structures of $[NEt_4]_2[Te_3Se_6]$ (1) and $[NEt_4]_2[Te_3Se_7]$ (2) consist, respectively, of one-dimensional infinite $\frac{1}{20}[Te_3Se_6^{2-}]$ and $\frac{1}{20}[Te_3Se_7^{2-}]$ anionic chains separated by NEt₄⁺ cations. In compound 1, each chain comprises Te₃Se₅ eight-membered rings bridged by Se atoms. The Te₃Se₅ ring has an "open book" conformation. The NMR spectrum of a DMF solution of $[NEt_4]_2[Te_3Se_6]$ crystals at 223 K shows ⁷⁷Se resonances at $\delta = 290$, 349, and 771 ppm and a single ¹²⁵Te resonance at $\delta = 944.7$ ppm. In compound 2, each chain comprises Te₃Se₆ five- and six-membered rings bridged by Se atoms. The Te₃Se₆ ring can be regarded as an inorganic analogue of bicyclononane. The anion of $[PPh_4]_2[Te_2Se_2]$ (4) contains a Se-Te-Te-Se chain with the terminal Se atoms trans to one another. The new compounds $[PPN]_2[TeSe_{10}]$ (3), $[NMe_4]_2[TeSe_3] \cdot DMF$ (5), and $[NEt_4]_2[TeSe_3]$ (6) contain known anions.

Introduction

Although many polytelluride and polyselenide anions have been isolated and their structures characterized by single-crystal X-ray difffraction methods,¹⁻¹⁰ the known mixed Te/Se polychalcogenide anions $[Te_mSe_n]^{p-}$ are limited to $[TeSe_2]^{2-,11}$ $[TeSe_3]^{2-,11,12}$ $[Te(Se_5)_2]^{2-,13}$ $[Te(Se_5)_3]^{4-,14}$ and $[\{Te(Se_2)\}_2(\mu_2-(Se_2)]^{2-.14}$ These anions, which have been

- Brese, N. E.; Randall, C. R.; Ibers, J. A. Inorg. Chem. 1988, 27, 940– 943.
- (2) Sheldrick, W. S.; Braunbeck, H. G. Z. Naturforsch. B: Anorg. Chem. Org. Chem. **1989**, 44, 1397–1401.
- (3) Fenske, D.; Kräuter, G.; Dehnicke, K. Angew. Chem., Int. Ed. Engl. 1990, 29, 390–391.
- (4) Müller, V.; Dehnicke, K.; Fenske, D.; Baum, G. Z. Naturforsch. B: Chem. Sci. 1991, 46, 63–67.
- (5) Staffel, R.; Müller, U.; Ahle, A.; Dehnicke, K. Z. Naturforsch. B: Chem. Sci. 1991, 46, 1287–1292.
- (6) Krebs, B.; Lührs, E.; Willmer, R.; Ahlers, F.-P. Z. Anorg. Allg. Chem. 1991, 592, 17–34.
- (7) Huang, S.-P.; Dhingra, S.; Kanatzidis, M. G. Polyhedron **1992**, 11, 1869–1875.
- (8) Müller, V.; Grebe, C.; Müller, U.; Dehnicke, K. Z. Anorg. Allg. Chem. 1993, 619, 416–420.
- (9) Müller, V.; Ahle, A.; Frenzen, G.; Neumüller, B.; Dehnicke, K.; Fenske, D. Z. Anorg. Allg. Chem. 1993, 619, 1247–1256.
- (10) Smith, D. M.; Ibers, J. A. Coord. Chem. Rev. 2000, 200–202, 187– 205.

prepared by high-temperature solid-state or solventothermal or solution methods, contain Te^{II} or Te^{IV} centers bonded to $\operatorname{Se}_{n}^{2-}$ species (n = 1, 2, or 5). We recently reported the compound [PPh₄]₂[NEt₄][CuTe₇], which was synthesized from the reaction in DMF of CuCl with a polytelluride solution.¹⁵ A novel mixed Te/Se anion [Te₃Se₇]²⁻ containing five- and six-membered rings was isolated when we attempted the synthesis of a hypothetical mixed $[CuTe_{7-n}Se_n]^{3-1}$ anion by addition of polyselenide to the reaction that afforded [CuTe₇]³⁻. Also two other mixed Te/Se anions were isolated from reactions of other metal sources such as HgCl₂ and $Cr(CO)_6$ with polytelluride/polyselenide solutions in DMF. We therefore decided to study the reactions of polyselenide and polytelluride anions with one another in the presence of different-size cations, in some instances in the presence of metal sources. Here, we report the syntheses by such reactions of six new mixed Te/Se compounds. Three of these

- (11) Björgvinsson, M.; Sawyer, J. F.; Schrobilgen, G. J. Inorg. Chem. 1991, 30, 4238–4245.
- (12) Zagler, R.; Eisenmann, B. Z. Kristallogr. 1988, 183, 193-200.
- (13) Zagler, R.; Eisenmann, B. Z. Naturforsch. B: Chem. Sci. 1991, 46, 593–601.
- (14) Wachhold, M.; Sheldrick, W. S. J. Solid State Chem. **1997**, 134, 364–375.
- (15) Sekar, P.; Arnold, F. P., Jr.; Ibers, J. A. *Inorg. Chem.* **2002**, *41*, 577–581.

 $[\]ast$ To whom correspondence should be addressed. E-mail: ibers@chem.northwestern.edu.

Mixed Te/Se Polychalcogenide Anions

contain previously unknown $[Te_mSe_n]^{2-}$ anions; among these anions, two comprise infinite chains of Te/Se rings.

Experimental Section

General Procedures. All manipulations were performed under an inert atmosphere of N2 with the use of standard Schlenk-line techniques or under Ar in a glovebox. Solvents were dried, distilled, and degassed under N2 before use. Anhydrous N,N-dimethylformamide (DMF), purchased from Fisher Chemical, Fair Lawn, NJ, was stored over activated molecular sieves and degassed with dry N₂ before use. Anhydrous diethyl ether (Et₂O) and tetrahydrofuran (THF) were distilled from Na and benzophenone. Compounds Li₂Q (Q = Se, Te) were prepared from the stoichiometric reactions of Li and Q in liquid NH₃. CuCl (Strem Chemical Co., Newburyport, MA), Cr(CO)₆ (Pressure Chemical Co., Pittsburgh, PA), and PEt₃ (Aldrich Chemical Co., Milwaukee, WI) were used as received. Energy-dispersive analyses by X-ray (EDAX) were performed with the use of a Hitachi 3500 scanning electron microscope equipped with an X-ray detector. 77Se and 125Te NMR spectra were recorded on an INOVA 400-MHz spectrometer with a 10-mm broadband NMR probe with DMF- d_7 /DMF as the solvent. ⁷⁷Se chemical shifts, in ppm, were recorded at 76.287 MHz and referenced to an external standard of a saturated solution of Ph2Se2 in CD2Cl2 (set to 460 ppm). ¹²⁵Te chemical shifts, in ppm, were recorded at 126.234 MHz and referenced to an external standard of a saturated solution of Ph₂Te₂ in CD₂Cl₂ (set to 422 ppm). Electrospray mass spectra were obtained on a Micromass Quattro II instrument. Elemental analyses were performed by Oneida Research Services, Whitesboro, NY.

Synthesis of [NEt₄]₂[Te₃Se₆] (1). Li₂Se (0.217 g, 2.34 mmol), Se (0.552 g, 6.99 mmol), Li₂Te (0.142 g, 1.00 mmol), Te (0.383 g, 3.00 mmol), and NEt₄Cl (0.331 g, 2.00 mmol) were dissolved in DMF (20 mL). The resulting yellow-green solution was stirred at 293 K for 2 h, filtered, and then layered with Et₂O (10 mL). Black crystals of [NEt₄]₂[Te₃Se₆] grew overnight at 293 K. Yield: 850 mg, 0.76 mmol, 76% (based on NEt₄Cl). ⁷⁷Se NMR (400 MHz, DMF, 223 K, Ph₂Se₂): $\delta = 290$, 349, 771 ppm. ¹²⁵Te NMR (400 MHz, DMF, 223 K, Ph₂Te₂): $\delta = 944.7$ ppm. ESI-MS (DMF) *m*/*z* (%): 494 (70) [M⁺ – 4Se], 288 (24) [M⁺ – 5Se + Te], 238 (20) [M⁺ – 4Se + 2Te]. Anal. Calcd for C₁₆H₄₀N₂Se₆Te₃: C 17.20, H 3.61, N 2.51%. Found: C 17.13, H 3.43, N 2.41%.

Synthesis of [NEt₄]₂[Te₃Se₇] (2). Li₂Se (0.217 g, 2.34 mmol), Se (0.552 g, 6.99 mmol), Li₂Te (0.142 g, 1.00 mmol), Te (0.383 g, 3.00 mmol), CuCl (0.099 g, 1 mmol), PEt₃ (0.2 mL), NEt₄Cl (0.166 g, 1.00 mmol), and PPh₄Br (0.419 g, 1.00 mmol) were dissolved in DMF (20 mL). Black needles of [NEt₄]₂[Te₃Se₇] grew over a few weeks at 278 K. Yield: 0.2 g, 0.17 mmol, 33% (based on NEt₄Cl). The synthesis could not be repeated successfully, either from the above reaction or with the addition of PPh₄Br to the reaction system that afforded compound **1**.

Synthesis of [PPN]₂[TeSe₁₀] (3). Compound **3** was synthesized in a manner similar to the synthesis of compound **1**, but with the substitution of [PPN]Cl (PPN = bis(triphenylphosphine)iminium) (1.148 g, 2.00 mmol) for NEt₄Cl. When the solution was layered with Et₂O (10 mL), black crystals of [PPN]₂[TeSe₁₀] grew overnight at 293 K. Layering additional Et₂O (10 mL) to the parent solution gave a second batch of [PPN]₂[TeSe₁₀] crystals. Total yield: 1.27 g, 0.64 mmol, 64% (based on [PPN]Cl). Anal. Calcd for C₇₂H₆₀N₂P₄Se₁₀Te: C 43.36, H 3.03, N 1.40%. Found: C 43.60, H 3.08, N 1.34%.

Synthesis of [PPh₄]₂[Te₂Se₂] (4). Li₂Se (0.217 g, 2.34 mmol), Se (0.552 g, 6.99 mmol), Li₂Te (0.142 g, 1.00 mmol), Te (0.383 g, 3.00 mmol), Cr(CO)₆ (0.220 g, 1 mmol), and PPh₄Br (0.838 g,

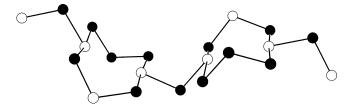
2.00 mmol) were dissolved in DMF (20 mL). The reaction mixture was stirred at 293 K for 3 days. Only few black crystals of $[PPh_4]_2[Te_2Se_2]$ formed after the solution was layered with Et₂O (10 mL) at 293 K. Attempts to isolate compound **4** without Cr(CO)₆ in the reaction mixture afforded the known compound $[PPh_4]_2[TeSe_{10}]$,⁷ as deduced from a crystal-structure determination. (Details can be found in the Supporting Information.) The yield of $[PPh_4]_2[TeSe_{10}]$ was 1.06 g, 0.66 mmol, 66% (based on PPh_4Br).

Synthesis of [NMe₄]₂[TeSe₃]·DMF (5). Li₂Se (0.217 g, 2.34 mmol), Se (0.552 g, 6.99 mmol), Li₂Te (0.142 g, 1.00 mmol), Te (0.383 g, 3.00 mmol), and NMe₄Cl (0.219 g, 2.00 mmol) were dissolved in DMF (20 mL). Red crystals of [NMe₄]₂[TeSe₃]·DMF grew overnight at 293 K. Yield: 0.382 g, 0.65 mmol, 65% (based on NMe₄Cl). Anal. Calcd for C₁₁H₃₁N₃OSe₃Te: C 22.55, H 5.33, N 7.17%. Found: C 22.63, H 4.96, N 7.31%.

Synthesis of [NEt₄]₂[TeSe₃] (6). Li₂Se (0.217 g, 2.34 mmol), Se (0.552 g, 6.99 mmol), Li₂Te (0.142 g, 1.00 mmol), Te (0.383 g, 3.00 mmol), NEt₄Cl (0.166 g, 1.00 mmol), and PPh₄Br (0.419 g, 1.00 mmol) were dissolved in DMF (20 mL). Red crystals of [NEt₄]₂[TeSe₃] grew overnight at 293 K. Yield: 0.437 g, 0.70 mmol, 70% (based on NEt₄Cl). ⁷⁷Se NMR (400 MHz, DMF, 223 K, Ph₂Se₂): δ = 477 ppm. ¹²⁵Te NMR (400 MHz, DMF, 223 K, Ph₂Te₂): δ = 1088 ppm. Anal. Calcd for C₁₆H₄₀N₂Se₃Te: C 30.75, H 6.45, N 4.48%. Found: C 30.83, H 6.63, N 4.54%.

Crystallography. Single-crystal X-ray diffraction data were collected with the use of the program SMART¹⁶ on a Bruker Smart 1000 CCD diffractometer¹⁶ at 153 K with monochromatized Mo K α radiation ($\lambda = 0.71073$ Å). The diffracted intensities generated by a scan of 0.3° in ω were recorded on four sets of 606 frames at φ settings of 0°, 90°, 180°, and 270°, with an additional 50 frames at $\varphi = 0^{\circ}$. The exposure times (s/frame) were 10 (for 4 and 6), 15 (for 1, 3, and 5), and 20 (for 2). Cell refinement and data reduction were carried out with the use of the program SAINT.¹⁶ There was no evidence of twinning in any of the data sets. Face-indexed absorption corrections were made with the program XPREP.¹⁷ Then the program SADABS was employed to make incident beam and decay corrections.¹⁶ The structures were solved by direct methods with the program SHELXS and refined by full-matrix least-squares techniques with the program SHELXL in the SHELXTL-97 suite.¹⁷ Hydrogen atoms were generated in calculated positions and constrained with the use of a riding model. The final models involved anisotropic displacement parameters for all non-hydrogen atoms. Except in the following instances, such refinements were straightforward. For compound 1, there is Te/Se disorder at one position, as judged both by bond distances and by refinement the Te/Se occupancy, which converged to 0.53(4) and was subsequently set to 0.50. There are two independent NEt_4^+ cations in the asymmetric unit, each lying on a mirror plane. The independent atoms in these cations were refined with a series of restraints. Compound 4 has two independent [Te₂Se₂]²⁻ anions and four PPh₄⁺ cations in the asymmetric unit. One of these anions is disordered and could not be modeled in a totally satisfactory manner; atom Te3 from the second $[Te_2Se_2]^{2-}$ anion occupies two different sites in approximately a 0.62(1):0.38(1) manner.

Selected crystallographic data for compounds 1-6 are listed in Table 1. Further crystallographic details can be found in the Supporting Information.


⁽¹⁶⁾ Bruker. SMART Version 5.054 Data Collection and SAINT-Plus Version 6.45 Data Processing Software for the SMART System; Bruker Analytical X-ray Instruments, Inc., Madison, WI, 2003.

⁽¹⁷⁾ Sheldrick, G. M. SHELXTL DOS/Windows/NT Version 6.14; Bruker Analytical X-ray Instruments, Inc., Madison, WI, 2003.

 Table 1. Selected Crystallographic Data

	$[NEt_4]_2[Te_3Se_6]$ (1)	$[NEt_4]_2[Te_3Se_7]$ (2)	$[PPN]_2[TeSe_{10}] $ (3)	$[PPh_4]_2[Te_2Se_2]$ (4)	[NMe ₄] ₂ [TeSe ₃]•DMF (5)	[NEt ₄] ₂ [TeSe ₃] (6)
formula	$C_{16}H_{40}N_2Se_6Te_3$	$C_{16}H_{40}N_2Se_7Te_3$	C72H60N2P4Se10Te	C ₉₆ H ₈₀ P ₄ Se ₄ Te ₄	C11H31N3OSe3Te	C ₁₆ H ₄₀ N ₂ Se ₃ Te
fw	1117.06	1196.02	1994.30	2183.72	585.87	624.98
space group	Pnma	Pbca	$P2_1/c$	$P\overline{1}$	$P2_1/c$	$P2_1/c$
a (Å)	14.4975(8)	14.811(5)	11.0540(8)	11.346(1)	15.601(1)	8.5056(7)
$b(\mathbf{A})$	13.1068(7)	12.795(4)	18.427(1)	19.420(2)	11.7941(8)	13.467(1)
c (Å)	15.8270(8)	32.802(11)	17.844(1)	20.000(3)	11.8795(8)	20.889(2)
α (deg)	90	90	90	89.402(2)	90	
β (deg)	90	90	95.441(1)	76.282(2)	107.992(1)	97.097(1)
γ (deg)	90	90	90	88.457(2)	90	
$V(Å^3)$	3007.4(3)	6216(3)	3618.3(5)	4279.3(9)	2079.0(2)	2374.5(3)
Z	4	8	2	2	4	4
$T(\mathbf{K})$	153	153	153	153	153	153
ρ_{calcd} (g/cm ³)	2.467	2.556	1.830	1.695	1.872	1.748
μ (Mo K α) (cm ⁻¹)	101.60	110.03	55.72	31.72	66.82	58.52
$R_1(F)^a$	0.024	0.065	0.059	0.086	0.029	0.026
$R_{\rm w}(F^2)^b$	0.060	0.208	0.199	0.254	0.071	0.070

 ${}^{a}R_{1}(F) = \sum ||F_{0}| - |F_{c}||/\sum |F_{0}|$. ${}^{b}R_{w}(F_{0}{}^{2}) = [\sum w(F_{0}{}^{2} - F_{c}{}^{2})^{2}/\sum wF_{0}{}^{4}]^{1/2}$; $w^{-1} = \sigma^{2}(F_{0}{}^{2}) + (qF_{0}{}^{2})^{2}$ for $F_{0}{}^{2} > 0$; $w^{-1} = \sigma^{2}(F_{0}{}^{2})$ for $F_{0}{}^{2} > 0$; $w^{-1} = \sigma^{2}(F_{0}{}^{2})$

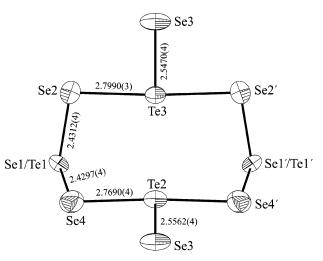


Figure 1. Sketch of part of the infinite chain of the ${}^{1}_{\infty}$ [Te₃Se₆²⁻] anion in [NEt₄]₂[Te₃Se₆] (1). The black circles are Se; the white circles are Te. The disorder, which presumably results from the random "flipping" of the Te₃Se₅ rings, is not shown.

Results

Syntheses. Six new mixed Te/Se compounds (1-6) resulted from reactions at 293 K of Te_n²⁻ and Se_n²⁻ anions in *N*,*N*-dimethylformamide (DMF) in the presence of differentsize ammonium or phosphonium cations and, in some instances, the presence of metal sources. With the exception of compound **2**, the syntheses are reproducible; the yields are good except for that of compound **4**. Three of these compounds contain previously unknown [Te_mSe_n]²⁻ anions. The compounds are readily soluble in DMF to afford very air-sensitive solutions. However, crystals of these materials are modestly air stable.

Structure of [NEt₄]₂[Te₃Se₆] (1). The crystal structure of [NEt₄]₂[Te₃Se₆] consists of one-dimensional infinite $\frac{1}{2}$ [Te₃Se₆²⁻] anionic chains separated by NEt₄⁺ cations. Each chain comprises Te₃Se₅ eight-membered rings bridged by Se atoms (Figure 1). There is a crystallographically imposed mirror plane passing through atoms Se3, Te2, and Te3. From the refinement of the X-ray data, the 1 position is occupied 50% by Se1 and 50% by Te1 (Figure 2). This disorder results from the random "flipping" of the Te₃Se₆ rings along the chain and not from cocrystallization of the hypothetical species [NEt₄]₂[Te₂Se₇] and [NEt₄]₂[Te₄Se₅], because such cocrystallization would not be expected to comprise 50% of each species. The Te3, Se2, Se2', Te2, Se4, Se4' portion of the Te₃Se₅ ring is essentially planar (mean deviation, 0.055 Å), with atoms Se1 and Te1 1.35 Å from this plane. Thus, the Te₃Se₅ ring can be regarded as having

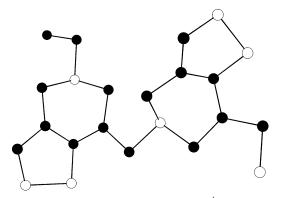
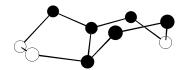


Figure 2. Te₃Se₅ ring in [NEt₄]₂[Te₃Se₆] (1). Primed atoms are related to the corresponding unprimed atoms by the mirror plane through atoms Se3, Te3, and Te2. Displacement ellipsoids are drawn at the 75% probability level. Bond distances are shown. Bond angles are Se3–Te3–Se2, 88.24(1)°; Se2–Te3–Se2', 176.43(1)°; Se3–Te2–Se4, 84.22(1)°; Se4–Te2–Se4', 167.89(2)°; Se4–Se1/Te1–Se2, 106.99(1)°; Se1/Te1–Se2–Te3, 97.48(1)°; Te3–Se3–Te2, 104.67(2)°; Se1/Te1–Se4–Te2, 94.36(1)°.


an "open book" conformation. The eight-membered rings in the chain alternate in their orientation (Figure 1).

Bond distances and angles are shown in Figure 2. The Te–Se distances not affected by disorder are typical of Te–Se single bonds, for example, 2.501(1) Å in $[TeSe_2]^{2-.11}$ The (Se1/Te1)–Se2 and (Se1/Te1)–Se4 bond lengths at 2.43 Å are a superposition of such a Te–Se single bond with a Se–Se single bond (typically, about 2.34 Å in length).

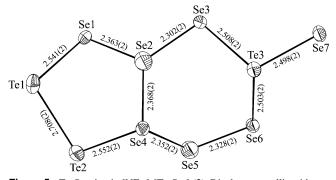

[NEt₄]₂[Te₃Se₆] is diamagnetic in the range 5–300 K. The ⁷⁷Se NMR spectrum of a DMF solution of [NEt₄]₂[Te₃Se₆] crystals at 223 K shows resonances at $\delta = 290$, 349, and 771 ppm, and the ¹²⁵Te NMR spectrum of the same solution shows a single resonance at $\delta = 944.7$ ppm. From the solidstate structure (Figure 1), three ⁷⁷Se and two ¹²⁵Te resonances are expected. However, it is improbable that the infinite chain persists in solution. The ⁷⁷Se resonances fall in the same region as those reported for the [TeSe₃]^{2–},^{11,18} [MTe_nSe_{8–n}]^{2–} (M = Zn, Cd, Hg; n = 0-4),¹⁹ and [Se_n]^{2–} (n = 2-6)^{18,20}

Figure 3. Sketch of part of the infinite chain of the $\frac{1}{\infty}$ [Te₃Se₇^{2–}] anion in [NEt₄]₂[Te₃Se₇] (2). The black circles are Se; the white circles are Te.

Figure 4. Sketch of the fused rings in $[NEt_4]_2[Te_3Se_7]$ (2). The black circles are Se; the white circles are Te.

Figure 5. Te₃Se₆ ring in [NEt₄]₂[Te₃Se₇] (2). Displacement ellipsoids are drawn at the 50% probability level. Bond distances are shown, except for Se5–Se⁷ = 2.345(2) Å. Bond angles are Se1–Te1–Te2, 99.54(6)°; Se1–Se2–Se3, 120.59(9)°; Se1–Se2–Se4, 118.22(9)°; Se2–Se1–Te1, 97.17-(8)°; Se2–Se3–Te3, 100.77(7)°; Se2–Se4–Te2, 100.21(7)°; Se2–Se4–Se5, 94.53(8)°; Se3–Se2–Se4, 121.13(9)°; Se3–Te3–Se6, 106.20(6)°; Se3–Te3–Se7, 103.05(6)°; Se4–Te2–Te1, 95.67(5)°; Se4–Se5–Se6, 119.70(8)°; Se5–Se4–Te2, 102.93(7)°; Se5–Se6–Te3, 101.44(7)°; Se6–Te3–Se7, 101.28(6)°.

anions. The observed ¹²⁵Te NMR resonance at $\delta = 944.7$ ppm compares favorably with that of $\delta = 1087$ ppm for the [TeSe₃]^{2–} anion.¹¹

Structure of [NEt₄]₂[Te₃Se₇] (2). The crystal structure of [NEt₄]₂[Te₃Se₇] consists of one-dimensional infinite ${}^{1}_{\infty}$ [Te₃Se₇²⁻] anionic chains separated by NEt₄⁺ cations. Each chain comprises fused five- and six-membered rings of composition Te₃Se₆ bridged by Se atoms (Figure 3). These rings alternate in their orientation along the chain. The Te₃Se₆ ring (Figure 4) can be regarded as an inorganic analogue of bicyclononane. The bridging Se atom in the chain is bonded to a Te atom of the six-membered ring and a Se atom of the six-membered ring from the next repeating unit. Bond distances and angles are shown in Figure 5. The Se–Se, Se–Te, and Te–Te bond distances are typical of

- (18) Björgvinsson, M.; Schrobilgen, G. J. Inorg. Chem. 1991, 30, 2540-2547.
- (19) Bollinger, J. C.; Ibers, J. A. Inorg. Chem. 1995, 34, 1859-1867.
- (20) Cusick, J.; Dance, I. Polyhedron 1991, 10, 2629-2640.

single bonds. This is the first example of a structure of a mixed Se/Te compound containing fused five- and six-membered rings.

Structure of [PPN]₂[TeSe₁₀] (3). The crystal structure of **3** contains a [TeSe₁₀]²⁻ anion. This anion has been reported previously in [K(2,2,2-crypt)]₂[TeSe₁₀],¹³ [Ba(2,2,2-crypt)-(en)][TeSe₁₀]•en_{0.5},¹³ and [PPh₄]₂[TeSe₁₀].⁷ The structure of [TeSe₁₀]²⁻ anion consists of two similar [Se₅]²⁻ chains coordinated to a Te^{II} center in a square-planar geometry to form a spirocyclic ring. The [TeSe₁₀]²⁻ anion possesses a crystallographically imposed inversion symmetry. The Te–Se bond distances (Table 2) are longer than the typical Te–Se single bond distance (2.53 Å),²¹ but comparable to those in the related [TeSe₁₀]²⁻ anions.¹³

Structure of [PPh₄]₂[Te₂Se₂] (4). The crystal structure of **4** contains a Se–Te–Te–Se chain with the terminal Se atoms trans to one another. This anion is analogous to the homopolychalcogenide anions Se_4^{2-} and Te_4^{2-} . The two independent $[Te_2Se_2]^{2-}$ anions in the unit cell are shown in Figure 6. The $[Te_2Se_2]^{2-}$ anion has been proposed as one of the intermediates in the scheme of converting a polytelluride solution and elemental Se into $[TeSe_3]^{2-}$.^{12,18} ⁷⁷Se and ¹²⁵Te NMR data have been reported for this anion.¹⁸

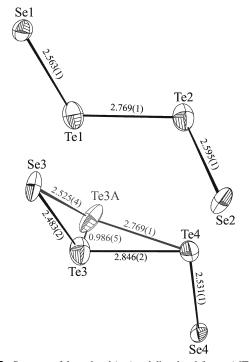
Structures of $[NMe_4]_2[TeSe_3]$ ·DMF (5) and $[NEt_4]_2$ -[TeSe₃] (6). The crystal structures of 5 and 6 contain the trigonal-pyramidal [TeSe₃]²⁻ anion. The Te-Se bond distances (Table 3) are shorter than a typical Te-Se single bond distance (2.53 Å),²¹ but comparable to those in related salts containing the [TeSe₃]²⁻ anion.¹¹ The ⁷⁷Se (δ = 477 ppm) and ¹²⁵Te (δ = 1088 ppm) NMR resonances of 6 at 223 K are very close to the reported value for [K(2,2,2-crypt)]₂-[TeSe₃]¹¹ (⁷⁷Se (δ = 468 ppm) and ¹²⁵Te (δ = 1087 ppm)).

Discussion

From crystallographic studies, rings of the Q₈ type are well-known for Q = S and Se, but are very rare for Q = Te. Te₈ rings are found in Cs₃Te₂₂²² and Cs₄Te₂₈.²³ From spectroscopic studies, eight-membered rings of the Q₈ type are known for S/Se,^{24–27} S/Te,²⁸ and 1,2-TeSeS₆.²⁸ Although among the polycations a number of Te/Se ring systems exist,²⁹ such rings are far less common among the polyanions.¹⁰ For example, the $[Te_8]^{2-}$ anion does not exhibit a ring structure, but rather comprises a Te²⁺ center coordinated in a distorted square-planar fashion to $[Te_4]^{2-}$ and $[Te_3]^{2-}$ chelating rings.³⁰ Among Te/Se systems, disordered

- (21) Pauling, L. *The Nature of the Chemical Bond*, 3rd ed.; Cornell University Press: Ithaca, NY, 1960.
- (22) Sheldrick, W. S.; Wachhold, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 450-451.
- (23) Sheldrick, W. S.; Wachhold, M. J. Chem. Soc., Chem. Commun. 1996, 607–608.
- (24) Laitinen, R. S.; Pakkanen, T. A. J. Chem. Soc., Chem. Commun. 1986, 1381–1382.
- (25) Laitinen, R. S.; Pakkanen, T. A. *Inorg. Chem.* **1987**, *26*, 2598–2603.
 (26) Chivers, T.; Laitinen, R. S.; Schmidt, K. J. Can. J. Chem. **1992**, *70*, 719–725.
- (27) Steudel, R.; Papavassiliou, M.; Baumgart, F. Z. Naturforsch. B: Chem. Sci. 1991, 46, 1674–1678.
- (28) Chivers, T.; Laitinen, R. S.; Schmidt, K. J.; Taavitsainen, J. Inorg. Chem. 1993, 32, 337–340.
- (29) Beck, J. Coord. Chem. Rev. 1997, 163, 55-70.

Table 2. Selected Bond Distances (Å) and Angles (deg) for 3 and Related Compounds


			[Ba(2,2,2-crypt)(en)][TeSe ₁₀]•en _{0.5} ^b		
	$[PPN]_2[TeSe_{10}]^a$ (3)	$[K(2,2,2-crypt)]_2 [TeSe_{10}]^b$	molecule 1	molecule 2	$[PPh_4]_2[TeSe_{10}]^{a,c}$
Te1-Se1	2.809(1)	2.815(2)	2.819(3)	2.805(3)	2.809(2)
Te1-Se5	2.808(1)	2.824(2)	2.823(3)	2.821(3)	2.870(2)
Se1-Se2	2.337(1)	2.305(4)	2.287(6)	2.323(6)	2.348(2)
Se2-Se3	2.377(1)	2.349(4)	2.316(6)	2.341(6)	2.388(3)
Se3-Se4	2.421(1)	2.336(4)	2.309(6)	2.342(6)	2.399(2)
Se4-Se5	2.401(1)	2.311(4)	2.248(6)	2.314(6)	2.347(2)
Te1-Se1-Se2	105.57(3)	104.0(1)	104.2(2)	107.4(2)	99.34(7)
Se1-Se2-Se3	107.62(5)	107.2(1)	104.1(2)	106.6(2)	103.93(7)
Se2-Se3-Se4	103.33(4)	103.2(1)	100.2(2)	102.8(2)	104.88(10)
Se3-Se4-Se5	104.00(5)	106.1(1)	106.1(2)	107.3(2)	106.72(10)
Se4-Se5-Te1	103.95(3)	105.2(1)	108.8(2)	104.0(2)	109.95(8)
Se5-Te1-Se1	93.03(3)	95.6(1)	106.8(2)	105.3(2)	93.39(5)
Se5'-Te1-Se1	86.97(3)	84.4(1)	73.2(2)	74.7(2)	86.62(5)

^a This work. ^b Reference 13. ^c For this compound, ref 7 reports the synthesis and limited crystallographic characterization from X-ray powder diffraction data.

Table 3. Selected Bond Distances (Å) and Angles (deg) for 5, 6, and Related Compounds

	$[NMe_4]_2[TeSe_3]$ ·DMF ^a (5)	$[NEt_4]_2[TeSe_3]^a$ (6)	Na ₂ TeSe ₃ ^b	K ₂ TeSe ₃ ^b	$[K(2,2,2-crypt)]_2[TeSe_3]^c$
Te1-Se1	2.4724(4)	2.4822(3)	2.515(2)	2.500(4)	2.454(4)
Te1-Se2	2.4598(4)	2.4767(3)	2.499(2)	2.496(4)	2.465(4)
Te1-Se3	2.4853(4)	2.4714(4)	2.494(2)	2.478(4)	2.460(4)
Se1-Te1-Se2	105.74(1)	105.01(1)	100.4(1)	102.6(1)	108.9(1)
Se1-Te1-Se3	105.25(1)	106.47(1)	102.0(1)	105.6(1)	104.8(2)
Se2-Te1-Se3	105.65(1)	106.93(1)	102.9(1)	101.9(1)	107.4(1)

^a This work. ^b Reference 12. ^c Reference 11.

Figure 6. Structure of the ordered (top) and disordered (bottom) $[Te_2Se_2]^{2-}$ anions in $[PPh_4]_2[Te_2Se_2]$ (4). Displacement ellipsoids are drawn at the 50% (top) and 30% (bottom) probability levels. Bond distances are shown, but are not representative for the disordered anion in which Te3/Te3A = 0.62: 0.38. Bond angles for the ordered anion are Se1-Te1-Te2, 113.52(3)°; Se2-Te2-Te1, 109.12(3)°.

 $Te_{0.32}Se_{7.68}{}^{31}$ and $Te_{1.05}Se_{5.95}{}^{32}$ rings have been claimed, and the $Te_4Se_2{}^{33}$ ring has been reported. An ordered Te_3Se_3 ring is found in $Cs_4Te_{9.74}Se_{13.26}{}^{14}$ The structure of $Rb_2TeSe_4{}^{34}$ determined from X-ray powder data, is believed to contain an infinite chain of Te_2Se_4 six-membered rings sharing Te centers. Thus, the Te_3Se_5 ring found in $[NEt_4]_2[Te_3Se_6]$ (1) and the fused five- and six-membered rings of composition Te_3Se_6 found in $[NEt_4]_2[Te_3Se_7]$ (2) are further examples of mixed Te/Se rings.

Complex equilibria among multiple species are typical of polytelluride and polyselenide solutions.^{18,20,35–41} The mixed polytelluride/polyselenide solution in the present preparation is no exception and probably displays even more complex equilibria among Se_n^{2-} , Te_n^{2-} , and $[\text{Te}_m\text{Se}_n]^{2-}$ species. Indeed, in the presence of NEt_4^+ , $[\text{NEt}_4]_2[\text{Te}_3\text{Se}_6]$ (1) is isolated in 76% yield. In contrast, under the same conditions but with a change of cation, we isolate completely different products, including $[\text{PPN}]_2[\text{TeSe}_{10}]$ (3) and $[\text{NMe}_4]_2[\text{TeSe}_3]$ • DMF (5). If the Se/Te ratio is increased from 2.3:1 originally chosen to optimize the yield of 1, then red Se is produced in these reactions. If the Se/Te ratio is decreased, then Te and Te₄²⁻ are produced. Moreover, the reaction with the

- (30) Schreiner, B.; Dehnicke, K.; Maczek, K.; Fenske, D. Z. Anorg. Allg. Chem. 1993, 619, 1414–1418.
- (31) Nagata, K.; Hayashi, H.; Miyamoto, Y. Fukuoka Univ. Sci. Rep. 1988, 18, 21–33.
- (32) Nagata, K.; Hayashi, H.; Miyamoto, Y. Fukuoka Univ. Sci. Rep. 1988, 18, 35–46.
- (33) Wachhold, M.; Sheldrick, W. S. Z. Naturforsch. B: Chem. Sci. 1997, 52, 169–175.
- (34) Kretschmann, U.; Böttcher, P. Z. Naturforsch. B: Anorg. Chem. Org. Chem. 1985, 40, 895–899.
- (35) Sharp, K. W.; Koehler, W. H. *Inorg. Chem.* 1977, *16*, 2258–2265.
 (36) Teller, R. G.; Krause, L. J.; Haushalter, R. C. *Inorg. Chem.* 1983, *22*,
- 1809–1812.
- (37) Schultz, L. D.; Koehler, W. H. Inorg. Chem. 1987, 26, 1989–1993.
 (38) Schultz, L. D. Inorg. Chim. Acta 1990, 176, 271–275.
- (39) Raymond, C. C.; Dick, D. L.; Dorhout, P. K. *Inorg. Chem.* **1997**, *36*,
- 2678–2681. (40) Ahrika, A.; Paris, J. New J. Chem. **1999**, 23, 1177–1180.
- (41) Ahrika, A.; Robert, J.; Anouti, M.; Paris, J. New J. Chem. 2001, 25, 741–746.

Mixed Te/Se Polychalcogenide Anions

mixed countercations PPh_4^+ and NEt_4^+ , effective for the isolation in high yield of certain $[MTe_7]^{3-}$ species, ^{15,42,43} produced $[NEt_4]_2[TeSe_3]$ (6), a new salt of the known $[TeSe_3]^{2-}$ anion.¹¹ The presence of a metal species further complicates matters. Thus, $[PPh_4]_2[Te_2Se_2]$ (4) could only be synthesized in the presence of $Cr(CO)_6$.

This work demonstrates that new $[Te_mSe_n]^{2-}$ species, some with unprecedented structures, can be isolated reproducibly and in good yield from mixed polytelluride/polyselenide solutions.

Acknowledgment. This work was supported by the U.S. National Science Foundation through Grant CHE9819385. We are indebted to Dr. Regine Herbst-Irmer of the University of Göttingen for her help with the refinement of the disordered NEt_4^+ cations in compound 1. We thank Dr. Kwasi Mitchell for the magnetic susceptibility measurements.

Supporting Information Available: X-ray crystallographic data in CIF format for $[NEt_4]_2[Te_3Se_6]$ (1), $[NEt_4]_2[Te_3Se_7]$ (2), $[PPN]_2$ - $[TeSe_{10}]$ (3), $[PPh_4]_2[Te_2Se_2]$ (4), $[NMe_4]_2[TeSe_3]$ ·DMF (5), $[NEt_4]_2$ - $[TeSe_3]$ (6), and $[PPh_4]_2[TeSe_{10}]$. This material is available free of charge via the Internet at http://pubs.acs.org.

IC040026H

⁽⁴²⁾ McConnachie, J. M.; Ansari, M. A.; Bollinger, J. C.; Salm, R. J.; Ibers, J. A. Inorg. Chem. 1993, 32, 3201–3202.

⁽⁴³⁾ Smith, D. M.; Roof, L. C.; Ansari, M. A.; McConnachie, J. M.; Bollinger, J. C.; Pell, M. A.; Salm, R. J.; Ibers, J. A. *Inorg. Chem.* **1996**, *35*, 4999–5006.